The Conformation of Non-Aromatic Ring Compounds. VII. \dagger Crystal Structure of trans-2,5-Dichloro-1,4-dioxane at $-125^{\circ} \mathrm{C}$

By C. Altona, Carolyn Knobler \ddagger and C. Romers
Laboratory of Organic Chemistry, University of Leiden, The Netherlands

(Received 21 December 1962 and in revised form 11 March 1963)
trans-2,5-Dichloro-1,4-dioxane crystallizes in the triclinic system: space group $P \overline{1}, Z=1$,

$$
a=4.573, b=5 \cdot 491, c=6.665 \AA ; \alpha=86 \cdot 25^{\circ}, \beta=104 \cdot 10^{\circ}, \gamma=106 \cdot 23^{\circ}
$$

at room temperature. Three independent sets of data were used to refine the atomic coordinates:
(i) Reflexion intensities of the zones [100] and [001], with Mo $K \alpha$ radiation at room temperature.
(ii) Reflexion intensities of the zones [100] and [001], with Mo $K \alpha$ radiation at $-125^{\circ} \mathrm{C}$.
(iii) Three-dimensional reflexion intensities observed with $\mathrm{Cu} K \alpha$ radiation at $-125^{\circ} \mathrm{C}$.

The dioxane ring has the chair form with the chlorine atoms in axial positions. Some bond lengths show interesting deviations from the expected values:

$$
\begin{gathered}
\mathrm{C}(1)-\mathrm{Cl}=\mathrm{I} \cdot 845 \pm 0.006, \mathrm{C}(1)-\mathrm{O}=1 \cdot 388 \pm 0.007, \mathrm{C}(2)-\mathrm{O}=1.428 \pm 0.007 \\
\mathrm{C}(1)-\mathrm{C}\left(2^{\prime}\right)=1.513 \pm 0.008 \AA \text { at }-125^{\circ} \mathrm{C} .
\end{gathered}
$$

1. Introduction

The present study is the first of a series of crystal structure analyses of halogeno-1,4-dioxanes initiated in this laboratory during the past few years. The properties and conformation of this class of substituted heterocyclic molecules have also been investigated in solution by infrared and Raman spectroscopy and by measurements of electric dipole moments (Altona, Romers \& Havinga, 1959; Altona, 1963). This research was undertaken in order to determine the preferred conformation or conformations and to compare the results with those from earlier studies of analogous cyclohexane derivatives, both in solution (Kwestroo, Meijer \& Havinga, 1954) and in the solid state (Hassel \& Vihovde, 1953).

A cis and a trans form of 2,5 -dichlorodioxane are theoretically possible. Only one isomer is known (Bryan, Smedley \& Summerbell, 1950). The trans configuration has been inferred from the low value $(0.60 \mathrm{D})$ of the dipole moment (Altona, Romers \& Havinga, 1959) and is now confirmed by X-ray analysis.

The structure was first refined in projections from molybdenum radiation data obtained at room temperature. Because the carbon-chlorine bond appeared to be unusually long, we decided to improve on the accuracy of the determination by application of Mo $K \alpha$ radiation at low temperature. After completion of this second analysis, digital computing facilities became available and a third refinement was carried out with full three-dimensional $\mathrm{Cu} K \alpha$ data, also

[^0]collected at $-125{ }^{\circ} \mathrm{C}$. These three determinations offer interesting material for comparative purposes.

2. Experimental

trans-2,5-Dichloro-1,4-dioxane, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{Cl}_{2}$, m.p. 122$124{ }^{\circ} \mathrm{C}$, was prepared by chlorination of a mixture of 1,4-dioxane and carbon tetrachloride at $10^{\circ} \mathrm{C}$ in the presence of a trace of dibenzoyl peroxide (Bryan, Smedley \& Summerbell, 1950). The compound crystallizes from carbon tetrachloride in the form of white triclinic laths with principal zone [100] and faces $\{010\}$ and $\{001\}$. Plates with main faces $\{010\}$ were also found. The crystal faces are rough and the angles α, β and γ were not measured directly with an optical goniometer. The specimens chosen for X-ray diffraction were carefully sealed in dry Lindemann glass capillaries, because the crystals decompose rapidly in the presence of traces of moisture. They were also dipped into liquid air in order to minimize primary extinction effects.

Unit cell dimensions and angles at $20^{\circ} \mathrm{C}$ and at $-125{ }^{\circ} \mathrm{C}$ were measured from zero-level Weissenberg photographs about [100], [010] and [001], taken with unfiltered copper radiation ($\lambda \mathrm{Cu} K \alpha=1.5418 \AA$) and superposed with aluminum powder diffraction lines ($a=4.0489 \AA$ at $20^{\circ} \mathrm{C}$). No discontinuous structure transition was found between $20^{\circ} \mathrm{C}$ and $-125^{\circ} \mathrm{C}$. It is interesting to note (Table 1) that angle α^{*} changes from acute to obtuse on cooling and special care was exercised in indexing the films. The triclinic unit cell contains one molecule. The molecular symmetry is an inversion centre if the space group is $P \overline{1}$, an assumption confirmed by the straightforward refinement.

All intensity records were obtained on non-inte-

Table 1. Unit cell dimensions, angles, and densities at $20^{\circ} \mathrm{C}$ and at $-125^{\circ} \mathrm{C}$

	$20^{\circ} \mathrm{C}$	$-125^{\circ} \mathrm{C}$
a	$4.573 \pm 0.01 \AA$	$4.521 \pm 0.007 \AA$
b	$5 \cdot 491 \pm 0.01$	$5 \cdot 432 \pm 0.01$
c	6.665 ± 0.01	6.616 ± 0.01
α	$86.25 \pm 0.1^{\circ}$	$85.73 \pm 0.1^{\circ}$
β	$104 \cdot 10 \pm 0 \cdot 15$	$103 \cdot 85 \pm 0 \cdot 2$
γ	$106 \cdot 23 \pm 0 \cdot 2$	$106 \cdot 40 \pm 0 \cdot 25$
d (100)	$4.268 \pm 0.005 \AA$	$4 \cdot 222 \pm 0.003 \AA$
d (010)	$5 \cdot 272 \pm 0.005$	5.211 ± 0.005
d (001)	6.464 ± 0.005	6.423 ± 0.005
α^{*}	$89.85 \pm 0.05^{\circ}$	$90.42 \pm 0.05^{\circ}$
β^{*}	$76 \cdot 40 \pm 0 \cdot 1$	$76 \cdot 80 \pm 0 \cdot 1$
γ^{*}	$74 \cdot 20 \pm 0 \cdot 2$	$74 \cdot 13 \pm 0 \cdot 2$
U	$155 \cdot 8 \pm 0 \cdot 4 \AA^{3}$	$151 \cdot 3 \pm 0 \cdot 4 \AA^{3}$
$D_{x}(Z=1)$	$1.676 \mathrm{g.cm}^{-3}$	$1.727 \mathrm{~g} . \mathrm{cm}^{-3}$
D_{m}	1.65	-

grated equi-inclination Weissenberg photographs by the application of the multiple film technique. The films used for exposures with Mo $K \alpha$ radiation were interleaved with thin copper foils in order to reduce the intensities on successive films. The low temperature exposures were made according to the method described by Kreuger (1955). Since the exposure times were long (Table 2), an automatic filling system was designed in order to keep the liquid nitrogen in the cooling jacket at a constant level. A full description of the technical details will be given elsewhere (Altona, 1963).

Apart from preliminary Weissenberg photographs taken with copper radiation at room temperature, three sets of data were collected:

1. Reflexion intensities of the zones [100], [001] and [101] with Mo $K \alpha$ radiation at room temperature.
2. Reflexion intensities of the zones [100] and [001] with Mo $K \alpha$ radiation at $-125{ }^{\circ} \mathrm{C}$.
3. Reflexion intensities of the layers $0-3$ about [100] and $0-4$ about [001] with $\mathrm{Cu} K \alpha$ radiation at $-125^{\circ} \mathrm{C}$.
Some technical details of these sets of exposures are given in Table 2.

Within the $\mathrm{Cu} K \alpha$ limiting sphere about 690 reflexions are possible; 653 reflexions were recorded, 35 of which were too weak to be observed.

The visually estimated intensities were corrected in the usual way for Lorentz, polarization, and spotshape factors. The linear absorption coefficient $\mu(\mathrm{Mo} K \alpha)=9.5 \mathrm{~cm}^{-1}$ and $\mu(\mathrm{Cu} K \alpha)=85 \mathrm{~cm}^{-1}$. It follows that the specimens chosen for Mo $K \alpha$ exposures (Table 2) were sufficiently small to neglect absorption errors. An absorption correction (cylindrical approximation) was applied to the intensities obtained from the $\mathrm{Cu} K \alpha$ exposures.

The ($0 k l$) and ($h k 0$) observed structure factors of set (3) were put on an approximately absolute scale by comparison with the corresponding calculated structure factors F_{c} of set (2); all higher levels of the former set were then scaled by a thorough crosscorrelation procedure. About 360 structure factors F_{o} occurred on the a-axis as well as on the c-axis photographs. Their mean value F_{m} was compared with the difference $\boldsymbol{F}_{\boldsymbol{m}}-\boldsymbol{F}_{\boldsymbol{o}}$. The 'agreement factor'

$$
R_{m}=\Sigma\left|F_{m}-F_{o}\right| / \Sigma F_{m}=4.9 \%
$$

gives an indication of the accuracy of the measurements.

3. Two-dimensional refinements

The simple structure (Fig. 1) became evident after solution of the Patterson projections $P(u v)$ and $P(v w)$. With $Z=1$ the asymmetric unit consists of one chlorine atom, one oxygen atom, two carbon and three hydrogen atoms. The numbering of the atoms can be seen in Fig. 3.

Refinement of the structure by means of the room temperature Mo $K \alpha$ data (set 1) proceeded by calculation of successive cycles of structure factors, Fourier syntheses and difference maps in projections along [100] and [001]. An anisotropic temperature factor

$$
\exp \left[-\left(B_{1}+B_{2} \cos ^{2} \varphi\right)(\sin \theta / \lambda)^{2}\right]
$$

was introduced for the chlorine atom in the $F(0 k l)$ structure factor calculations, the angle between the direction of maximum vibration and the z axis being $48{ }^{\circ} \mathrm{C}$. The hydrogen atoms were incorporated into the molecular model by accepting $\mathrm{C}-\mathrm{H}$ bond distances of $1.03 \AA$ and tetrahedral bond angles. Final agreement indices R, taken over all observed reflexions, were:

$$
R(0 k l)=5 \cdot 9 \% \text { and } R(h k 0)=8 \cdot 5 \%
$$

Table 2. Technical data concerning the three sets of photographs taken \dagger

Set	Radiation	T	Reflexions	$\begin{gathered} \text { Crystal } \\ \text { cross-section } \end{gathered}$	Number of observed reflexions	$\underset{\text { time }}{\text { Exposure }}$	$\underset{\max }{\sin \theta \mid \lambda}$
1	Mo $K \boldsymbol{\alpha}$	20°	$\begin{aligned} & 0 k l \\ & h k 0 \end{aligned}$	$\begin{aligned} & 0.20 \times 0.35 \mathrm{~mm} \\ & 0.17 \times 0.23 \end{aligned}$	$\begin{array}{r} 100 \\ 74 \end{array}$	$\begin{gathered} 64 \mathrm{hr} \\ 180 \end{gathered}$	$\begin{aligned} & 0.83 \\ & 0.84 \end{aligned}$
2	Mo $K \boldsymbol{\alpha}$	-125°	$\begin{aligned} & 0 k l \\ & h k 0 \end{aligned}$	$\begin{aligned} & 0.30 \times 0.30 \\ & 0.25 \times 0.30 \end{aligned}$	$\begin{array}{r} 161 \\ 96 \end{array}$	$\begin{aligned} & 64 \\ & 92 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.96 \end{aligned}$
3	$\mathrm{Cu} K \alpha$	-125°	$\begin{gathered} 0 k l-3 k l \\ h k 0-h k 4 \end{gathered}$	$\begin{aligned} & 0.15 \times 0.15 \\ & 0.15 \times 0.15 \\ & \text { See text. } \end{aligned}$	618	4-8	$0 \cdot 64$

Fig. 1. Electron density projection of trans-2,5-dichloro-1,4dioxane (a) along [100], calculated from the low temperature Mo $K \alpha$ data (set 2); (b) along [001]. Contours are drawn at $2,4,6, \ldots$ e. \AA^{-2}; those about the chlorine atom are drawn at $4,8,12, \ldots e . \AA^{-2}$. Zero and negative contour lines are broken.

The low-temperature structure (Mo $K \alpha$ data, set 2) was refined in much the same way. Fourier maps (Fig. 1) and a number of difference syntheses were calculated at intervals of $1 / 120$. The direction of maximum vibration of the chlorine atom in projection along [100] was the same as noted previously. All hydrogen atoms were located close to the expected positions in difference maps that included low-angle reflexions only (Jellinek, 1958). Theoretical hydrogen coordinates, however, were used in the final structure factor calculations.

The value of $R(0 k l)$ was $8 \cdot 6 \%$ at this stage. Because $F_{o}<F_{c}$ for many strong reflexions, a correction for primary extinction was applied (Vand, 1955). The final R indices were : $R(0 k l)=6.3 \%$ and $R(h k 0)=6.9 \%$. The results of the two analyses will be discussed in §5 and 6. The observed and calculated structure factors of sets (1) and (2) will be given elsewhere.

The two-dimensional calculations were done with
a desk calculator and Beevers-Lipson strips; for both sets a final cycle of structure factors and difference syntheses was carried out on the electronic X1 computer of the University of Leiden, using programs devised by Keulemans (1961). Tables of scattering factors of chlorine (Dawson, 1960), carbon and oxygen (Berghuis, Haanappel, Potters, Loopstra, MacGillavry \& Veenendaal, 1955) and hydrogen (McWeeny, 1951) were used throughout this investigation.

4. Three-dimensional refinement

The data of set (3) were used to refine positions, scale-factor, and individual anisotropic temperature parameters by means of least-squares calculations. A block-diagonal approximation to the matrix of the normal equations was applied (Rollett, 1961). The calculations were carried out on the Mercury computer of the University of Manchester, England.
In the first cycle the final atomic positions and the isotropic temperature factors of the two-dimensional refinement with the data of set (2) were inserted. The few non-observed reflexions were given the value $\frac{1}{2} F_{\text {min }}$ where $F_{\text {min }}$ is the locally observable minimum of F_{o}. The $\left(F_{o}-F_{c}\right)^{2}$ values were weighted with a factor:

$$
w=1 /\left[1+\left\{\left(\left|F_{o}\right|-10\right) / 5\right\}^{2}\right] .
$$

The previously assumed hydrogen parameters were included in the calculations, but were not refined.
After four cycles of calculations the shifts in the atomic positions were less than $0.001 \AA$. Relatively large discrepancies still remained between F_{o} and F_{c} of most strong low-order reflexions. Attempts at applying extinction corrections according to the method proposed by Vand (1955) were not successful, presumably because different extinction and residual absorption errors in the data of the two crystals used have been mixed in the three-dimensional analysis.

The observed and calculated structure factors are listed in Table 3. The final agreement index is 8.6%. Exclusion of the non-observed terms and of the nine reflexions most suffering from extinction yields an R value of 7.7%.

Since no positional standard deviations were provided by the least-squares program, several threedimensional Fourier sections through each atom were calculated at intervals of $1 / 360$. From these maps the central curvatures $\partial^{2} \rho / \partial x^{2}$ etc. were obtained. The hydrogen maxima were found to lie close to the expected positions with peak densities $1.0-1.5 \AA^{-3}$, but no new hydrogen parameters were derived.

5. Atomic parameters and accuracy

Table 4 presents the following information, obtained from the three independent sets of data: the final atomic coordinates, the root mean square (r.m.s.) of the nearly isotropic coordinate standard deviations

Table 3. Observed and calculated structure factors (set 3)
Each group of reflexions is preceded by a and by the values of h and k common to that group. The remaining lines show l, F_{o} and $F_{c}(\times 50)$. Non-observed reflexions, inserted as $\frac{1}{2} F_{m i n}$, are indicated by X

(s.d.'s), and orthogonal coordinates, calculated by means of the transformations given by Cruickshank (1961). The s.d.'s were estimated by use of the expressions appropriate to the triclinic system (Cruickshank, 1949).

The coordinates of sets (2) and (3) can be compared directly. The agreement is satisfactory and their
r.m.s. difference equals $0.008 \AA$ for the lighter atoms. The individual differences are not significant, except for the chlorine atom in the x direction, where the difference is in the $1-5 \%$ probability range (Cruickshank \& Robertson, 1953).

The final temperature factors of the three sets are shown in Table 5. For comparative purposes the

Table 4. Final atomic coordinates in fractions of the cell edges
The root mean square standard deviations (\AA), and orthogonal atomic coordinates (\AA) from the three sets of data; the hydrogen positions are theoretical (see text)

Atom	Set	y / a	x / b	z / c	σ	X	Y	Z
Cl	1	0.2290	0.2495	0.1545	$0.0030 \AA$	$0.7638 \AA$	$1 \cdot 1447$ A	0.9987 §
	2	$0 \cdot 22950$	0.24900	$0 \cdot 15400$	0.0018	0.7634	$1 \cdot 1355$	0.9892
	3	$0 \cdot 23085$	0.24881	$0 \cdot 15462$	0.0013	0.7684	$1 \cdot 1330$	0.9932
0	1	0.6630	$0 \cdot 3155$	0.5155	0.0070	2. 105	1.110	$3 \cdot 332$
	2	$0 \cdot 6640$	$0 \cdot 3135$	0.5140	0.0045	2.106	1-109	$3 \cdot 302$
	3	$0 \cdot 6648$	$0 \cdot 3133$	0.5129	0.0037	2.103	1-109	3.295
C(1)	1	0.5940	$0 \cdot 4440$	$0 \cdot 3260$	0.0110	2.098	1-821	2.107
	2	0.5940	$0 \cdot 4450$	$0 \cdot 3250$	0.0064	2.087	1.819	2.088
	3	0.5936	$0 \cdot 4428$	$0 \cdot 3267$	0.0056	2.082	1-808	2.098
$\mathrm{C}(2)$	1	$0 \cdot 4540$	$0 \cdot 3000$	0.6400	0.0100	0.992	1-346	4.137
	2	$0 \cdot 4490$	$0 \cdot 2970$	$0 \cdot 6435$	0.0056	0.978	1.357	$4 \cdot 133$
	3	$0 \cdot 4467$	0.2969	$0 \cdot 6411$	0.0055	0.972	1-358	$4 \cdot 118$
$\mathrm{H}(1)$	calc.	0.770	0.470	0.254	-	$2 \cdot 96$	1.70	1.63
$\mathrm{H}(2)$	calc.	0.238	0.178	0.578	-	$0 \cdot 16$	0.95	3.71
$\mathrm{H}(3)$	calc.	0.548	0.227	0.786	-	1-19	0.92	$5 \cdot 05$

Table 5. Temperature factors $\left(\AA^{2}\right)$ from the three sets of data

	Set (1)		Set (2)		Set (3)					
Atom	$B[100]$	$B[001]$	B[100]	$B[001]$	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Cl	2.11*	3.85	1.06*	$1 \cdot 33$	$1 \cdot 99$	$2 \cdot 11$	1.75	0.57	0.15	-0.50
0	$2 \cdot 93$	$3 \cdot 55$	$1 \cdot 13$	1.06	1.73	$2 \cdot 27$	$2 \cdot 26$	0.92	$0 \cdot 65$	-0.13
C(1)	$2 \cdot 68$	3.81	1-15	1.08	1.76	2.49	1-48	0.68	0.21	-0.29
$\mathrm{C}(2)$	$2 \cdot 75$	$3 \cdot 52$	1-13	1.26	$2 \cdot 16$	$2 \cdot 15$	$2 \cdot 10$	0.65	0.77	-0.20
$\mathrm{H}(1)$, (2), (3)	$3 \cdot 00$	$3 \cdot 80$	1-10	1-10			isotro	$B=1 \cdot 10$		

anisotropic temperature factors $b_{i j}$, defined by $\exp -\left[b_{11} h^{2}+2 b_{12} h k+b_{22} k^{2}+2 b_{13} h l+2 b_{23} k l+b_{33} l^{2}\right]$ were converted into \AA^{2} units by means of the relation:

$$
B_{i j}=4 b_{i j} /\left(a_{i}^{*} a_{j}^{*}\right)
$$

Although the photographs of sets (2) and (3) have been taken at approximately the same temperature, the temperature factors obtained from the copper radiation data are larger. Probably a number of strong reflexions near the upper edge of the $\mathrm{Cu} K \alpha$ films have been underestimated, whereas on the Mo $K \alpha$ films the weak high-order spots may have been assigned too large a value. Whatever the cause, temperature factors obtained from visually estimated intensities clearly have only qualitative significance. In order to check the directions of the thermal motion, the principal axis parameters of the vibration ellipsoid
of the chlorine atom were calculated from the $b_{i j}$ values of set (3) (Busing \& Levy, 1958). The directions and magnitudes are:

$$
\begin{array}{ll}
U_{s}=-0.6208 \mathbf{a}+1.2814 \mathbf{b}+\mathbf{c}, & B_{s}=0.55 \AA^{2} \\
U_{m}=4.9383 \mathrm{a}+0.4421 \mathrm{~b}+\mathbf{c}, & B_{m}=1.88 \AA^{2} \\
U_{l}=-1.3270 \mathrm{a}-1.6741 \mathrm{~b}+\mathbf{c}, & B_{l}=2.98 \AA^{2}
\end{array}
$$

where \mathbf{a}, \mathbf{b} and \mathbf{c} are basic unit cell vectors defined in Table 1.

The angle between the maximum displacement vector and the carbon-chlorine bond is 108.9°. In the projection along [100] the angle between the direction of maximum vibration and c is 46.5°; this figure agrees with that found $\left(48^{\circ}\right)$ in both twodimensional analyses.

The observed peak electron densities ϱ_{0} and the central curvatures A are given in Table 6. These

Table 6. Observed electron densities and central curvatures from the three sets of measurements
The sets are indicated by subscripts 1,2 , and 3

	e. \AA^{-2}		e. \AA^{-3}	e. \AA^{-4}		e. \AA^{-5}		
Atom	ϱ_{1}	ϱ_{2}	ϱ_{3}	$-A_{1}$	$-A_{2}$	$-A_{3} h h$	$-A_{3} k$	$-A_{3} l$
Cl	$28 \cdot 0 \pm 0 \cdot 2$	$46 \cdot 0 \pm 0 \cdot 3$	$44 \cdot 0 \pm 0 \cdot 1$	520	930	432	460	446
0	$12 \cdot 2 \pm 0 \cdot 2$	$19 \cdot 9 \pm 0 \cdot 3$	$16 \cdot 4 \pm 0 \cdot 1$	180	367	161	154	152
C(1)	8.8 ± 0.2	$14 \cdot 6 \pm 0 \cdot 3$	$11 \cdot 2 \pm 0 \cdot 1$	116	252	109	99	104
$\mathrm{C}(2)$	$10 \cdot 2 \pm 0 \cdot 2$	$15 \cdot 4 \pm 0 \cdot 3$	$11 \cdot 4 \pm 0 \cdot 1$	138	307	113	103	102
H	$0 \cdot 6 \pm 0 \cdot 2$	$1 \cdot 1 \pm 0 \cdot 3$	$1 \cdot 4 \pm 0 \cdot 1$					

values generally agree with those expected on theoretical grounds (Atoji, 1957). It is well known that, because of series termination effects, lowering of the temperature has a smaller influence on the central curvatures obtained from $\mathrm{Cu} K \alpha$ data than on the curvatures from Mo $K \alpha$ data. Our work illustrates that, in some favourable cases at least, the standard errors of a two-dimensional analysis with molybdenum radiation at low temperature are comparable to those of a three-dimensional refinement with $\mathrm{Cu} K \alpha$ data at the same temperature.

6. Results and discussion

(a) Geometry of the molecule

The ring in trans-2,5-dichloro-1,4-dioxane has the normal chair form and the chlorine atoms occupy axial positions (aa). From infrared and Raman spectroscopic data the conclusion was drawn that the same conformation predominates in solution, regardless of the solvent (Altona, Romers \& Havinga, 1959; Altona, 1963). In fact, no indications were found for the existence of other conformations, such as the diequatorial one (ee). This behaviour is in contrast to that of trans-1,4-dichlorocyclohexane, a compound which occurs in solution as an equilibrium mixture containing both the ($e e$) and the (aa) chair forms (Kozima, Sakashita \& Maeda, 1954), while in the solid state only the (ee) conformation has been found (Hassel \& Vihovde, 1953). As a rule, the halogen atoms in dihalogeno-dioxanes occupy axial positions; the ($a a$) forms were also found in trans- 2,3 -dichlorodioxane and in trans-2,3-dibromodioxane, for which X-ray structure determinations have recently been accomplished (Altona \& Romers, 1963; Altona, Knobler \& Romers, 1963).

Table 7. Bond distances and bond angles in trans-2,5dichlorodioxane as determined from three independent sets of measurements

Atoms	Set (1)	Set (2)	Set (3)
$\mathrm{C}(1)-\mathrm{Cl}$	1.862 ± 0.011	1.852 ± 0.007	1.845 ± 0.006
$\mathrm{C}(1)-\mathrm{O}$	1.417 ± 0.013	1.407 ± 0.008	1.388 ± 0.007
$\mathrm{C}(2)-\mathrm{O}$	1.393 ± 0.013	1.423 ± 0.008	1.428 ± 0.007
$\mathrm{C}(1)-\mathrm{C}\left(2^{\prime}\right)$	1.521 ± 0.015	1.504 ± 0.009	1.513 ± 0.008
		Angles $\left(^{\circ}\right)$	
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(1)-\mathrm{Cl}$	108.4 ± 0.8	$109 \cdot 2 \pm 0.5$	109.6 ± 0.4
$\mathrm{O}-\mathrm{C}(1)-\mathrm{Cl}$	109.5 ± 0.8	109.6 ± 0.5	110.2 ± 0.4
$\mathrm{C}(1)-\mathrm{O}-\mathrm{C}(2)$	$114 \cdot 2 \pm 0.8$	113.9 ± 0.6	113.1 ± 0.5
$\mathrm{O}-\mathrm{C}(1)-\mathrm{C}\left(2^{\prime}\right)$	111.4 ± 0.9	112.4 ± 0.6	112.4 ± 0.5
$\mathrm{O}-\mathrm{C}(2)-\mathrm{C}\left(1^{\prime}\right)$	112.8 ± 0.9	111.9 ± 0.6	111.7 ± 0.5

The bond distances and angles, calculated from the parameters in Table 4, are given in Table 7, together with the estimated standard deviations (Cruickshank \& Robertson, 1953; Darlow, 1960) in which allowance has been made for the errors in the unit-cell dimen-
sions. No corrections for the effect of molecular librations were applied, mainly because of the uncertainty in the magnitudes of the vibration parameters.

Fig. 2. Schematic drawing of the molecule of trans-2,5-dichloro-1,4-dioxane showing some intramolecular distances and angles.

Agreement among the three independent analyses is again gratifying; none of the differences in bond distances between each set is found to be significant. In the following discussion the distances and angles from set (3), also shown in Fig. 2, will be used, as these are considered to be the most reliable values.
The valency angles are normal: those in the ring are $2-3^{\circ}$ larger than the tetrahedral values, in accordance with many data on aliphatic ring and open chain compounds; those about the $\mathrm{C}-\mathrm{Cl}$ bond do not differ significantly from 109.5°. Interesting bond distances are found in this molecule. The C-O bonds are not equivalent: $\mathrm{C}(1)-0(1.388 \AA)$ is $0.040 \AA$ shorter than $\mathrm{C}(2)-\mathrm{O} \quad(1 \cdot 428 \AA)$. The latter bond distance does not deviate significantly from the $\mathrm{C}-\mathrm{O}$ distance found in dimethyl ether ($1 \cdot 416 \AA$, Kimura \& Kubo, 1959; 1-417 Å, Kasai \& Myers, 1959), but $\mathrm{C}(1)-\mathrm{O}$ is appreciably shorter. The $\mathrm{C}-\mathrm{C}$ bond distance is comparable to that reported for ethyl chloride ($1.520 \pm 0.003 \AA$; Schwendeman \& Jacobs, 1962); both are perhaps shorter than the C-C distance in normal paraffins ($1.533 \AA$; Bartell, 1959).
The $\mathrm{C}-\mathrm{Cl}$ bond length is surprisingly large ($1 \cdot 845 \pm 0.006 \AA$). An average $\mathrm{C}-\mathrm{Cl}$ bond distance of ${ }_{1} \cdot 767 \AA$ is given by Sutton (1958). However, this figure includes distances in many compounds that contain two or three chlorine atoms attached to the same carbon atom. Few accurate $\mathrm{C}-\mathrm{Cl}$ bond distances have been reported for saturated aliphatic compounds of the types $-\mathrm{CHCl}-$ and $-\mathrm{CH}_{2} \mathrm{Cl}$. The available results

Fig. 3. (a) Orthographic projection along [100] of a layer of unit cells. Some intermolecular distances are shown. Distance between brackets refers to molecule at $x+1, y+1, z+1$. (b) The same along [001].
seem to indicate that the 'normal' aliphatic $\mathrm{C}-\mathrm{Cl}$ bond has a length of about $1.78-1.79 \AA$. Examples are: methyl chloride ($1.784 \AA$; Bartell \& Brockway, 1955 ; $1.7815 \AA$, Miller, Aamodt, Dousmanis, Townes \& Kraitchman, 1952) and ethyl chloride ($1.788 \AA$; Schwendeman \& Jacobs, 1962). Some examples of longer $\mathrm{C}-\mathrm{Cl}$ bonds are also known, e.g. in l-chloro-2-butyne ($1.798 \AA$; Laurie \& Lide, 1959) in allyl chloride ($1.82 \AA$; Bowen, Gilchrist \& Sutton, 1955), and in acetyl chloride ($1.82 \AA$; Allen \& Sutton, 1951). A $\mathrm{C}-\mathrm{Cl}$ bond distance of $1.87 \AA$ has been reported for chloromethyl methyl ether (Akishin, Vilkov \& Sokolova, 1960), but a recent redetermination (Planje, Toneman \& Dallinga, 1963) gave the value of $1.81 \AA$. We also found long $\mathrm{C}-\mathrm{Cl}$ bonds in trans-2,3-dichlorodioxane (mean value of two chemically equivalent bonds $1.835 \AA$) and in cis-2,3-dichlorodioxane where the axial $\mathrm{C}-\mathrm{Cl}$ bond has a length of $1.819 \pm 0.008 \AA$.

Allen \& Sutton (1951) observe in their discussion of the structure of the acetyl halides that all long bonds involving halogen atoms are unusually reactive in hydrolysis and dissociate easily. The halogen atoms in monochlorodioxane and in dichloro- and dibromodioxane, like those in open chain α-halo-ethers, are indeed highly reactive in hydrolysis reactions. Furthermore, the above authors conclude from dipole moment data that the increase in bond length is not correlated with a change in ionic character in the bonds. This conclusion is supported by the value of the dipole moment of monochlorodioxane, which indicates that a description in terms of contributions of mesomeric structures such as

$$
\grave{O}^{+} / \mathrm{Cl}
$$

does not seem adequate to account quantitatively for the considerable changes in the bond distances.

A satisfactory explanation for the phenomena cannot be given in the present state of our knowledge, but some points are worth noting. First, there are indications that the presence of lone electron pairs on an atom C in a compound $\mathrm{A}-\mathrm{B}-\mathrm{C}$ lengthens the bond $A-B$, particularly if the ion A^{-}is a weak base (cf. Bent, 1962). Secondly, the equatorial $\mathrm{C}-\mathrm{Cl}$ bond in cis-2,3-dichlorodioxane is 'normal' in length ($1.782 \pm 0.008 \AA$). Therefore, the spatial arrangement of atoms and lone pairs may well be important. It is not known with certainty which orbitals are used by the lone pair electrons of an ether oxygen atom, but according to the available evidence (Dickens \& Linnett, 1957; Gillespie \& Nyholm, 1957) two lone pairs are probably equivalent. Each oxygen atom of the dioxane ring then carries one equatorial and one axial lone pair; the axial lone pair and the oxygen, carbon and the axial, but not the equatorial chlorine atoms will have a planar configuration. It is known that planar configurations of atoms play an important role in the stereochemistry of elimination reactions. It now appears that coplanarity involving a lone pair at the one end of the system and a chlorine
atom at the other end may produce changes in the bond distances between the atoms in the plane. A more extensive discussion of these problems will be given elsewhere (Altona, 1963).

(b) Molecular environment

All intermolecular distances up to $4 \cdot 4 \AA$ have been calculated. Some of these are shown in Fig. 3. A fairly short $\mathrm{Cl} \cdots \mathrm{Cl}$ distance of $3 \cdot 38 \AA$ is found between two chlorine atoms in approximately 'head-on' positions: $\mathrm{Cl}(X, Y, Z)$ and $\mathrm{Cl}^{\prime}(X-1, Y-1, Z-1)$. The angle $\mathrm{C}(1)-\mathrm{Cl} \cdots \mathrm{Cl}^{\prime}$ is $157 \cdot 1^{\circ}$. Examples of comparable $\mathrm{Cl} \cdots \mathrm{Cl}$ separations are given by Fischmann, MacGillavry \& Romers (1961) and by Hermodsson (1960). The chlorine atoms are coordinated by six hydrogen atoms, two belonging to the 'original' molecule (H2 and H3, Fig. 3) and four others at distances varying between $2 \cdot 89 \AA$ and $3 \cdot 14 \AA$. The shortest distances among the remaining atoms are: $\mathrm{H} \cdots \mathrm{H}=2 \cdot 51 \AA ; \mathrm{O} \cdots \mathrm{O}=3 \cdot 18 \AA ; \mathrm{H} \cdots \mathrm{O}=2 \cdot 64 \AA$; $\mathrm{C} \cdots \mathrm{O}=3 \cdot 18 \AA ; \mathrm{Cl} \cdots \mathrm{C}=3 \cdot 62 \AA$. The packing is seen to be relatively dense.

The intra- and intermolecular atomic distances and angles were calculated on the X1 computer by means of an exhaustive program, written in ALGOL 60 by Mr H. L. Jonkers with the collaboration of Dr A. Ollongren and one of us (C. A.) (Program A 200, Centraal Reken-Instituut, The University, Leiden).

We are indebted to Prof. E. Havinga for suggesting this field of research and for his valuable interest. We wish to thank Miss L. Alzerda and Mr E. van Heijkoop for technical assistance during the low temperature work, and Mrs Barbara Duncanson and Mr O.S. Mills of the University of Manchester for their generous cooperation in the course of the leastsquares computations.

References

Akishin, P. A., Vilkov, L. V. \& Sokolova, N. P. (1960). Izvest. Sibir. Otdel. Akad. Nauk SSSR, 5, 59.
Allen, P. W. \& Sutton, L. E. (1951). Trans. Faraday Soc. 47, 236.
Altona, C. (1963). Thesis, University of Leiden. To be published.
Altona, C., Knobler, C. \& Romers, C. (1963). Rec. Trav. Chim. Pays-Bas. In the press.
Altona, C. \& Romers, C. (1963). Rec. Trav. Chim. Pays-Bas. In the press.
Altona, C., Romers, C. \& Havinga, E. (1959). Tetrahedron Letters, 1, No. 10, 16.
Atoji, M. (1957). Acta Cryst. 10, 291.
Bartell, L. S. (1959). J. Amer. Chem. Soc. 81, 3497.
Bartell, L. S. \& Brockway, L. O. (1955). J. Chem. Phys. 23, 1860.
Bent, H. A. (1962). J. Chem. Phys. 36, 1090.
Bergeuis, J., Haanapprl, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Bowen, H. J. M., Gilchrist, A. \& Sutton, L. E. (1955). Trans. Faraday Soc. 51, 1341.
Bryan, L. A., Smedley, W. M. \& Summerbell, R. K. (1950). J. Amer. Chem. Soc. 72, 2206.

Busing, W. R. \& Levy, H. A. (1958). Acta Cryst. 11, 450.

Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Cruickshank, D. W. J. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 71. London: Pergamon Press.
Cruickshank, D. W. J. \& Robertson, A. P. (1953). Acta Cryst. 6, 698.
Darlow, S. F. (1960). Acta Cryst. 13, 683.
Dawson, B. (1960). Acta Cryst. 13, 403.
Dickens, P. G. \& Linnett, J. W. (1957). Quart. Rev. Chem. Soc., Lond. 11, 291.
Dort, H. M. van, \& Havinga, E. (1963). Proc. Kon. Ned. Acad. Wetenschap. Amsterdam, B 66, 45.
Fischmann, E., MacGillavry, C. H. \& Romers, C. (1961). Acta Cryst. 14, 759.

Gillespie, R. J. \& Nyholm, R. S. (1957). Quart. Rev. Chem. Soc., Lond. 11, 339.
Hassel, O. \& Vihovde, E. H. (1953). Acta Chem. Scand. 7, 1164.
Hermodsson, Y. (1960). Acta Cryst. 13, 656.
Jellinek, F. (1958). Acta Cryst. 11, 677.

Kasai, P. H. \& Myers, R. J. (1959). J. Chem. Phys. 30, 1096 .
Keulemans, E. M. (1961). Programs ox8 and ox9, Centraal Reken-Instituut, Leiden.
Kimura, K. \& Kubo, M. (1959). J. Chem. Phys. 30, 151.
Kozima, K., Sakashita, K. \& Maeda, S. (1954). J. Amer. Chem. Soc. 76, 1965.
Kreuger, A. (1955). Acta Cryst. 8, 348.
Kwestroo, W., Meijer, F. A. \& Havinga, E. (1954). Rec. Trav. Chim. Pays-Bas, 73, 717.
Laurie, V. W. \& Lide, D. R., Jr. (1959). J. Chem. Phys. 31, 939.
McWeeny, R. (1951). Acta Cryst. 4, 513.
Miller, S. L., Aamodt, L. C., Dousmanis, G., Townes, C. H. \& Kraitchman, J. (1952). J. Chem. Phys. 20, 1112.

Planje, M. C., Toneman, L. H. \& Dallinga, G. (1963). Rec. Trav. Chim. Pays-Bas. To be published.
Rollett, J. S. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 115. London: Pergamon Press.
Schwendeman, R. H. \& Jacobs, G. D. (1962). J. Chem. Phys. 36, 1245.
Sutton, L. E. (1958). Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No. 11. London: The Chemical Society.
Vand, V. (1955). J. Appl. Phys. 36, 1191.

The Conformation of Non-Aromatic Ring Compounds. VIII.* The Crystal Structure of cis-2,3-Dichloro-1,4-dioxane at $-140{ }^{\circ} \mathrm{C}$

By C. Altona and C. Romers
Laboratory of Organic Chemistry, University of Leiden, The Netherlands

(Received 28 January 1963)
cis-2,3-Dichloro-1,4-dioxane crystallizes in the orthorhombic system, space group $P 2_{1} 2_{1} 2_{1}, Z=4$, and

$$
a=4 \cdot 463, b=10 \cdot 67, c=13 \cdot 13 \AA \text { at }-140^{\circ} \mathrm{C} .
$$

Abstract

The structure was refined in three projections by means of data obtained at about $-140{ }^{\circ} \mathrm{C}$ with molybdenum radiation.

The dioxane ring has the chair form. The two carbon-chlorine bonds are unequal in length: $\mathrm{C}(1)-\mathrm{Cl}(1)($ axial $)=1.819 \pm 0.009 \AA, \mathrm{C}(2)-\mathrm{Cl}(2) \quad$ (equatorial) $=1.78 \mathrm{I} \pm 0.007 \AA$.

Introduction

It seemed worthwhile to determine the structure of cis-2,3-dichloro-1,4-dioxane by X-ray methods, since this compound is the only known dihalogeno-1,4-dioxane in which an equatorial carbon-halogen bond was expected to be present (Altona, Romers \& Havinga, 1959).

Experimental

cis-2,3-Dichloro-1,4-dioxane was prepared by chlorination of a refluxing mixture of 1,4 -dioxane and carbon

[^1]tetrachloride (Summerbell \& Lunk, 1957). The compound crystallizes from carbon tetrachloride as colourless needles, elongated along the a axis. The crystals are soft and tend to disintegrate when even slight pressure is applied in directions perpendicular to the needle axis. After several trials some good crystals were obtained that could be cut along [010] and [001]. Their cross sections were roughly hexagonal with faces $\{001\}$ and $\{011\}$ about equally developed. A central capillary hole with a radius of approximately 0.02 mm ran along the full length of all these needles.

The dimensions of the unit cell were determined from zero-layer Weissenberg photographs taken with unfiltered $\mathrm{Cu} K x$ radiation ($\lambda=1.5418 \AA$) about [100],

[^0]: \dagger Part VI: van Dort \& Havinga (1963).
 \ddagger Present address: Chemistry Department, California Institute of Technology, Pasadena, California, U.S.A.

 AC $16-79$

[^1]: * Part VII: Altona, Knobler \& Romers (1963); for earlier parts see van Dort \& Havinga (1963).

